# OpSim: Test and simulation environment for grid control and aggregation strategies

Martin Braun, Frank Marten, Sebastian Wende-von Berg

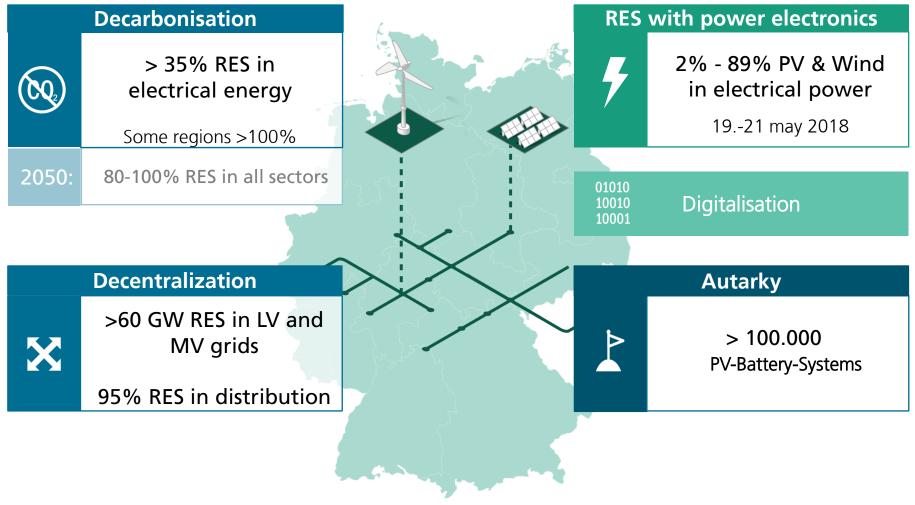
Fraunhofer IEE, University of Kassel



IRED 2018, Vienna

Session 4: Transmission and Distribution Interaction, Systems Integration, Modelling & Simulation

18 October 2018




#### Outline

- Motivation (German perspective)
- New operational strategies: TSO-DSO-DSO-interaction
  - Provision of ancillary services by controllable distributed energy units
  - Reactive power coordination and congestion management
  - Cascaded control
  - Example projects: SysDL2.0, EU-Sysflex, SINTEG c/sells, IMMOWEN
- Co-simulation with OpSim
  - Architecture
  - Testing with OpSim
  - OpSim as a service



## Energy System Transformation (Today – Future – Megatrends)



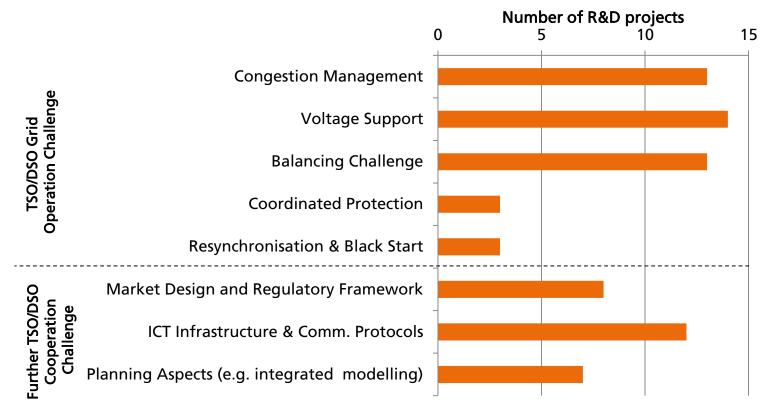
Distributed PV and Wind Energy are system relevant

Fraunhofer

## Challenge and Vision

Challenge:

- Decentralization
- Request for additional ancillary services from distributed generation (large number, spatially distributed, temporal uncertainties)


Vision:

- Reliable, secure and effective grid operation with a high penetration of DER units
- DSO 2.0 controls DG  $\rightarrow$  supports system stability (more responsibility)
- Ancillary services from DSO to TSO (e.g. PQ flexibilities , blackstart support)



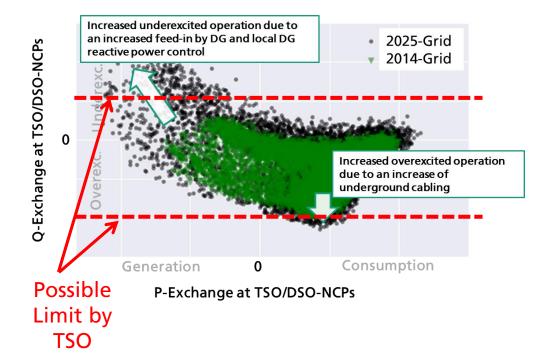
#### TSO/DSO cooperation challenges

Scope of identified 19 R&D projects on advanced TSO/DSO cooperation (multiple scopes per R&D projects possible) (preliminary)



**Source:** IEA PVPS Task 14 report: International R&D Project Collection – Advanced Cooperation between Distribution and Transmission Network Operation, (to be published), visit: http://www.iea-pvps.org/




## Example reactive power provision from DSO to TSO

Example: PQ - requirements at TSO/DSO interface, present situation in Germany:

- Challenge for the DSO to fulfill PQrequirements at TSO/DSO interface
- Situation can become worse because of DG expansion, grid expansion or local DG reactive power control

Solutions e.g.:

- Installation of additional compensators
- Q provision by DGs in the distribution grid
- Q provision by planned HVDC inverters
- Modification of power plants for phase shift operation



Example annual PQ-Exchange at TSO/DSO-NCPs for a distribution grid section [1] (current status and expected future development) Courtesy of Bayernwerk AG

NCP = Network Connection Point

[1] Kraiczy M. et al.: Gesicherte und dargebotsabhängige Blindleistungsbereitstellung durch Erzeugungsanlagen im Verteilnetz, Zukünftige Stromnetze für Erneuerbare Energie, Berlin, Januar 2017



## Reactive power provision from DSO to DSO

#### Example:

at Fraunhofer IEE we develop and test Qmanagement algorithms taking into account renewable distributed generators (DGs)!

#### General approach:

- LV-grid: local Q-control
- MV-grid: combined central and local control
  - Local control: fast and autonomous voltage support by MV-DGs
  - Central control: overall Q-management by MV-DGs

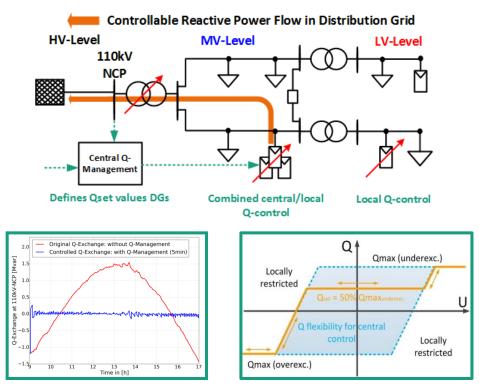



Fig: top: Combined central/ local Q-control approach [1], bottom left: example HiL-results [1], bottom right: Requested combined local/central approach by a German DSO [2] (Courtesy of Bayernwerk AG)

 H. Wang, et al. "Controlled Reactive Power Provision at the Interface of Medium- and High Voltage Level: First Laboratory Experiences for a Bayernwerk Distribution Grid using Real-Time-Hardware-in-the-Loop-Simulation," VDE ETG Congress, Bonn (Germany), 2015
 Bayernwerk AG, "Technische Richtlinie Erzeugungsanlagen am Mittelspannungsnetz der Bayernwerk AG, Juli 2008." July 2015



## SysDL 2.0 (Finalist ISGAN Award of Excellence 2018)

Ancillary services from area distribution grids and distributed RES for the TSO

DSO

- Drewag NETZ GmbH (consortium manager)
- ENSO Netz GmbH
- Mitteldeutsche Netzgesellschaft Strom mbH

#### TSO

50 Hertz Transmission GmbH

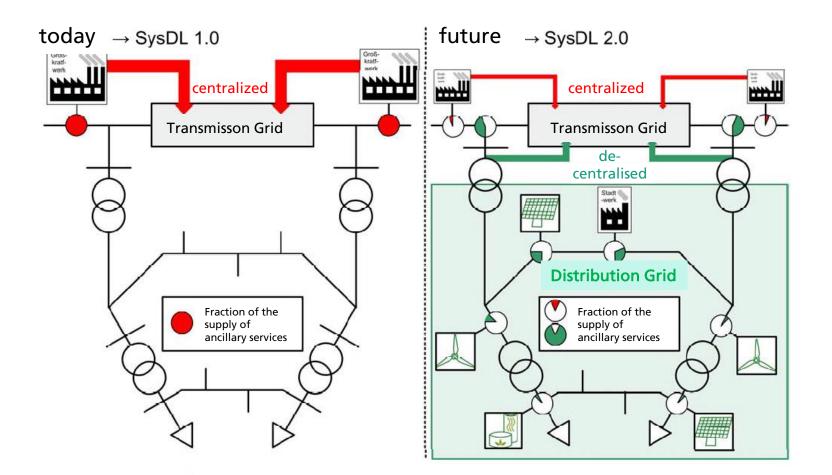
#### Research institutes

- Technical University Dresden
- Fraunhofer IEE
- Kassel University

#### Technology company

- Siemens AG
- Small and medium sized business
  - Fa. F&S Prozessautomation GmbH

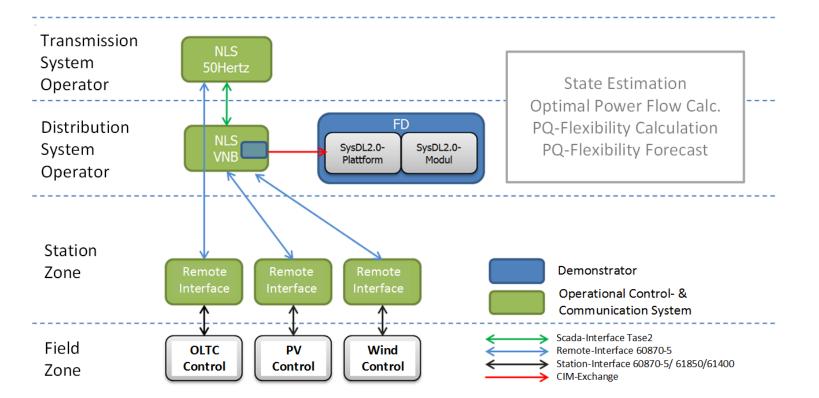
#### Associated partners


TEN, DNV GL

Martin Braun IRED 2018 Vienna | October 18, 2018



🗾 Fraunhofer


#### DSO 2.0 supplies ancillary services to TSO





## Organisation of the TSO/DSO interface

## Example: Project "SysDL 2.0" www.sysdl20.de



🗾 Fraunhofer

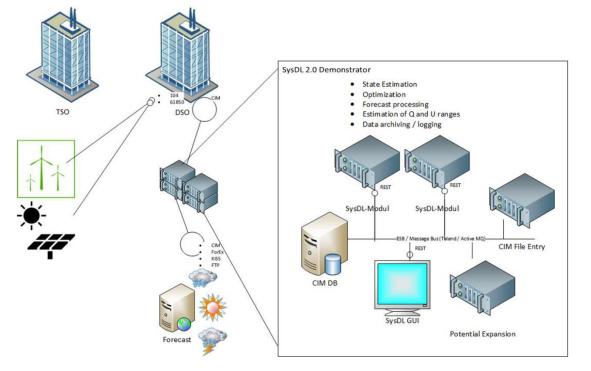
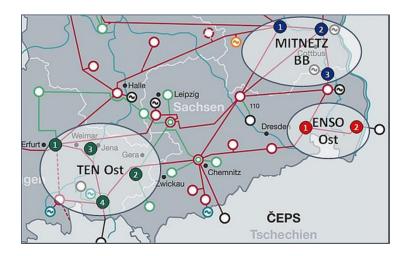
IEE

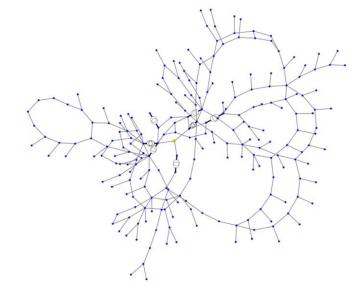
#### Image source: Project SysDL 2.0 (http://www.sysdl20.de)

## Organisation of the TSO/DSO interface

## Example: Project "SysDL 2.0" www.sysdl20.de

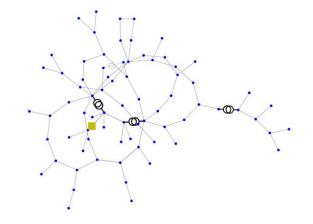
- DSO aggregates information about RES flexibilities via the SysDL 2.0 demonstrator
- Data exchange via CIM CGMES between DSO and demonstrator
- Results are provided via a web based interface (input and output)
- TSO can access this web interface remotely and the communicate with DSO



Image source: Project SysDL 2.0 (http://www.sysdl20.de)



## Grid topology and size of investigated networks

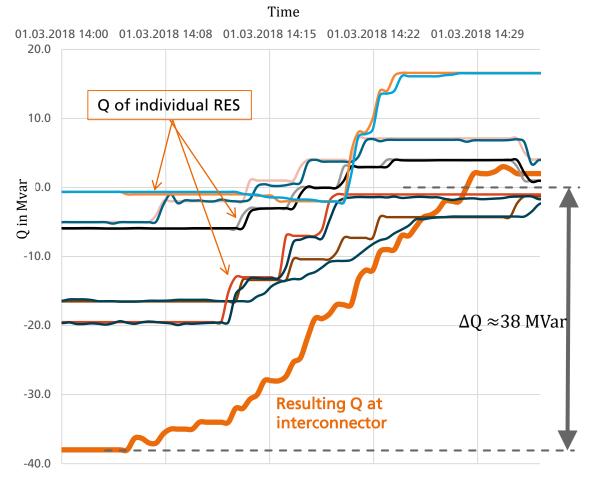

in real time simulation and field test





🗏 Fraunhofer 付

| Elements                    | Mitnetz      | ENSO    |
|-----------------------------|--------------|---------|
| # Buses                     | 200          | 80      |
| # Lines                     | 230          | 90      |
| # HV/MV substations (loads) | 70           | 50      |
| # Generators (wind + PV)    | 50 (30 + 20) | 6 (5+1) |
| # Interconnection points    | 3-5          | 2       |
| # EHV/HV transformers       | 10           | 4       |

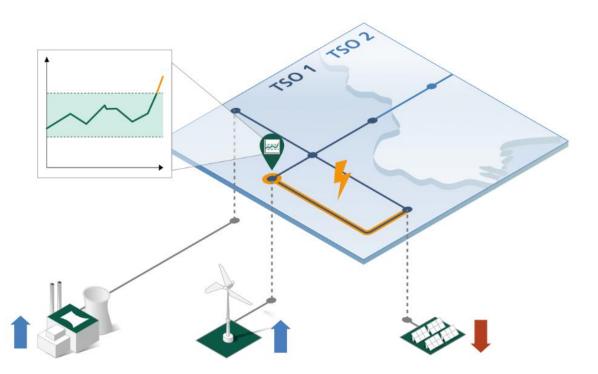



UΝ

## DSO – TSO Interaction

Results from the field test

- 1. DSO forecasts (next 4 hours) potential Q-range
- 2. TSO selects set-point from Q-range
- 3. DSO received set-point for interconnection point Q = 0
- 4. Optimization determined setpoints for RES
- Operator entered them manually in steps of 3 Mvar per 2 min (colored lines)
- 6. After 30 minutes, the desired set-point at interconnector was reached (dashed line)






## Successor project of SysDL2.0: EU-SysFlex

Determination of active power flexibilities from DER in distribution grids

- Development of algorithms to determine active power flexibilities of DER in distribution system
- Further development and automatization of reactive power flexibility determination
- Developement of an innovative state-estimation based on ANN
- Closed-loop connection between system platform and DMS

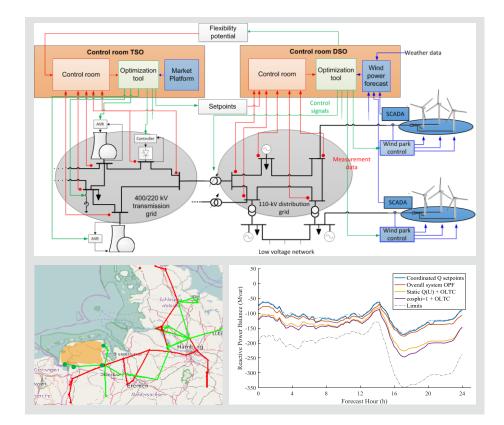


#### http://eu-sysflex.com/



## Optimized grid operation

in power systems with high penetration of renewables


Example: Increased demands on optimization and coordination between TSO & DSO due to changed generation location

Implementation of optimization tool to coordinate and enhance TSO-DSO-interface

- Optimization on DSO-level to provide flexibility potential at interface to TSO
- Optimization on TSO-level using own and TSO-flexibilities and giving setpoints to DSO
- DSO uses RES flexibilities to provide setpoints and new flexibility potentials

Study case:

- Larger DSO area in northern Germany with high share of RES
- (Part of) German transmission grid
- Reactive power provision in given limits using different approaches

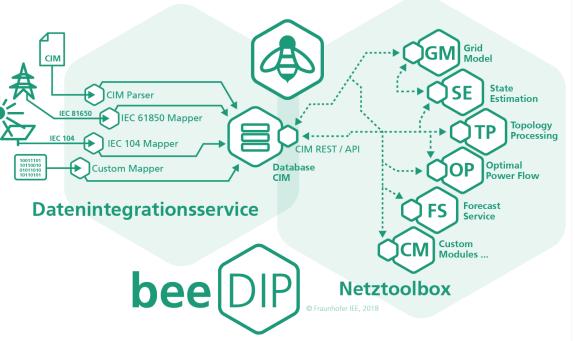


D. S. Stock, F. Sala, A. Berizzi, and L. Hofmann, "Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management," Energies, vol. 11, no. 1, p. 173, http://www.mdpi.com/1996-1073/11/1/173/pdf, 2018.

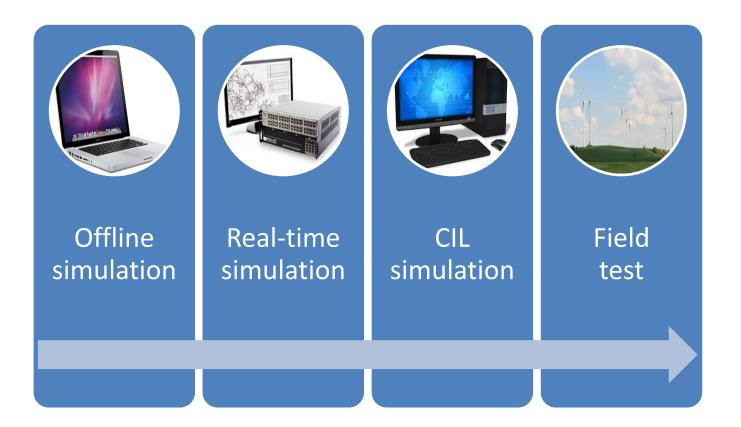
🗾 Fraunhofer

## Fraunhofer IEE Demonstrator Plattform beeDIP

#### Grid toolbox


- Environment for integration of internal and external modules and functions (higher order functionalities) for usage in DMS
- Independent of programming languages due to modular architecture (micro service and REST)
- Sustainable platform due to modifiable content
- Useable to integrate research results in already existing systems

#### Data integration service

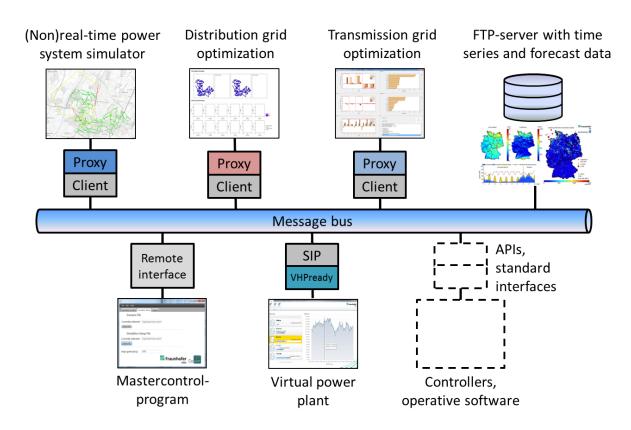

- Internal usage of pandapower, CIM CGMES<sup>1</sup> and standardized interfaces
- general access on module results and data via REST<sup>2</sup> API
- Integration and Aggregation of different data sources (forecast, measurements, topologies, ...)

🜌 Fraunhofer

<sup>1</sup>Common Grid Model Exchange Standard, <sup>2</sup>Representational State Transfer



#### From concept over laboratory to field





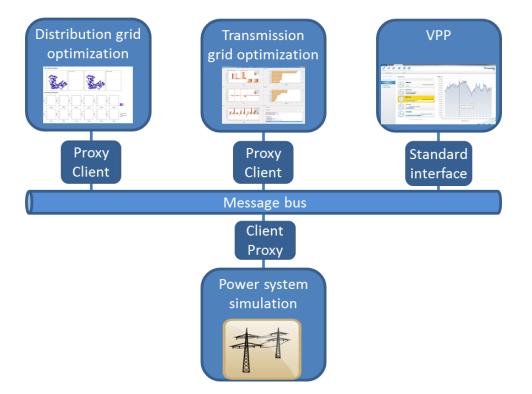

www.opsim.net/en

#### What is OpSim?

a flexible co-simulation platform, consisting of a message bus and a proxy / client architecture<sup>(\*)</sup> in Java.



Fraunhofer

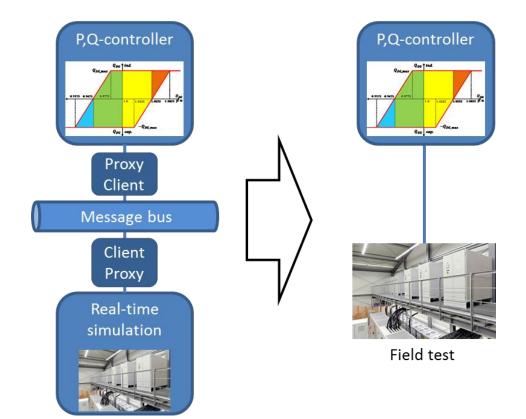

IEE

(\*) Concept: Faschang, M.; Kopzug, F.; Mosshammer, R.; Einfalt, A.; Proc. IECON 2013

www.opsim.net/en

#### Why co-simulation?

- We can study interactions between multiple grid operation strategies (= optimizers)!
- Or investigate interactions between grid control algorithms and virtual power plant software!

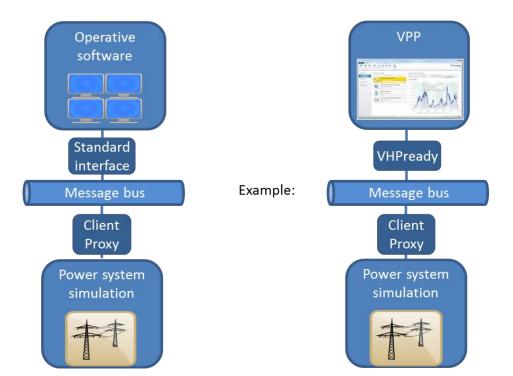





www.opsim.net/en

#### Why co-simulation?

- We can study interactions between multiple grid operation strategies (= optimizers)!
- Or investigate interactions between grid control algorithms and virtual power plant software!
- We can test our PQ-management algorithms in real-time, prior to field testing!

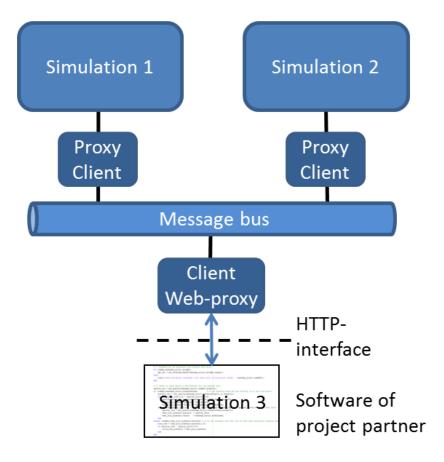





www.opsim.net/en

#### Interfaces crucial

- Standardized interfaces (CIM, IEC61850, IEC 60870-5-104, VHPready) allow tests of operative software in real-time!
- A HTTP-interface enables spatially separate, but causally correct cosimulations with external partners!






www.opsim.net/en

#### Interfaces crucial

- Standardized interfaces (CIM, IEC61850, IEC 60870-5-104, VHPready) allow tests of operative software in real-time!
- A HTTP-interface enables spatially separate, but causally correct cosimulations with external partners!
- HTTP-interface could also be used without any simulations from IEE, purely by external partners. (OpSim "as a service")



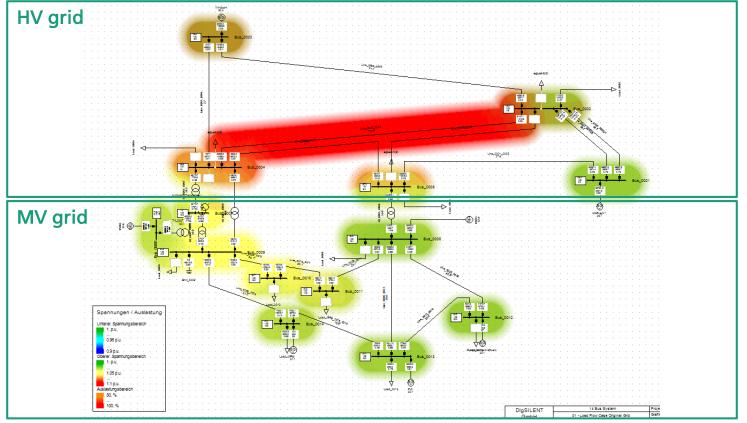


www.opsim.net/en

#### Examples

- VPP-software from Bosch
- DMS-/VPP-software from Fraunhofer IEE
- DMS-software from PSIcontrol



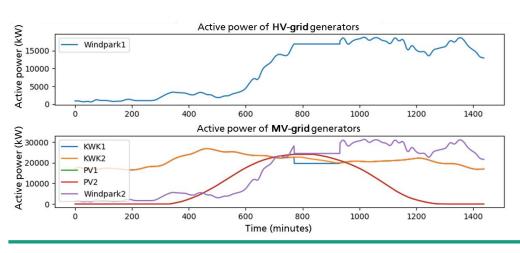

OpSim control center

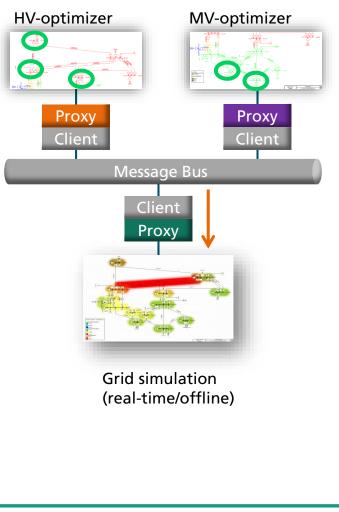




### OpSim simulation of cascaded TSO → DSO → DSO processes (project example: SINTEG c/sells)

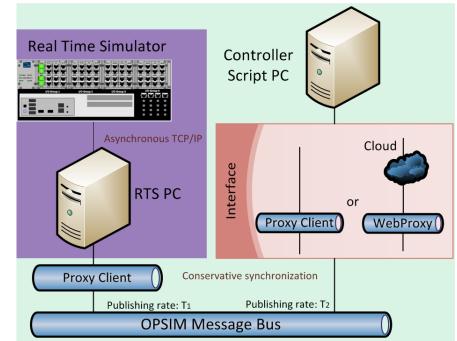
- Congestion in high voltage (HV) grid!
- The congestion cannot be solved alone by measures in the HV grid.
- "Cascaded" downregulation of power plants in HV and MV grid necessary!





🗾 Fraunhofer

## OpSim simulation of cascaded TSO → DSO → DSO processes (project example: SINTEG c/sells)

🗾 Fraunhofer

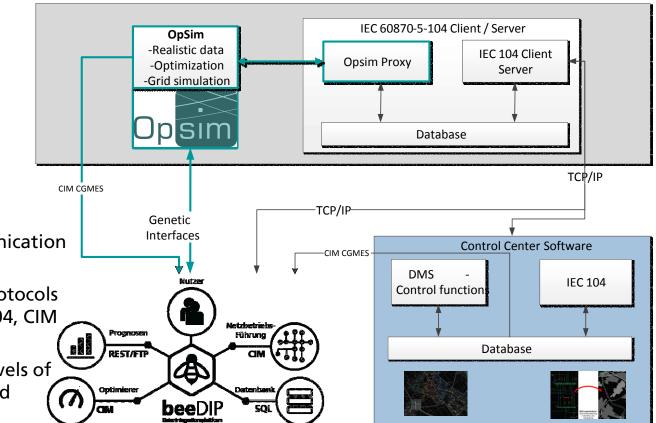

- 1. Congestion occurs in grid simulation.
- 2. HV-optimizer computes sensitivity factors (for controllable HV-generators or HV-loads) that could resolve the congestion.
- MV-optimizer also receives a cascaded Preduction set point from the HV-optimizer and computes how to fulfill it using MV-generators.
- 4. Both optimizers send their P-reduction set points to the grid simulation -> result of cascade!





#### OpSim as a service

- In the EriGrid project [1], OpSim is used to connect international research laboratories.
- A voltage controller PC located in Athens, Greece, is connected to a real-time grid simulator in Kassel, Germany [2].
- In this way, real-time control algorithms can be tested by (inter)national partners, before they go into field tests.
- Due to PHIL-capability of real-time simulator, this architecture also allows for remote PHIL-experiments!




[1] https://erigrid.eu/, [2] J. Montoya, R. Brandl, M. Vogt, F. Marten, M. Maniatopoulos; Asynchronous Integration of a Real-Time Simulator to a Geographically Distributed Controller through a Co-Simulation Environment, IECON 2018

🗾 Fraunhofer

## Real labs with OpSim and beeDIP

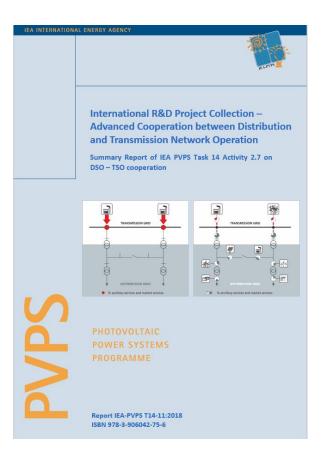
- Realistic replication of communication
- <u>OpSim</u>: Grid simulation, controller prototypes and scenarios
- <u>beeDIP</u>: Platform for implementation of new functionalities via standardized interfaces
- <u>DMS</u>: Replication of real functionalities and communication
- tests of communication via standardized interfaces, protocols and data models (61850, 104, CIM CGMES)
- Information of different levels of detail via DMS interface and direct simulation
- Test and validation of new innovative methods and processes in a realistic DMS environment



🗾 Fraunhofer

#### Conclusions

- Ancillary / system services will be innovated by making use of distributed energy units and their control flexibilities
  - $\rightarrow$  new operational strategies, DSO-DSO-TSO communication
  - New concepts (hierarchies, degree of decentralization etc.)
  - New solutions (interfaces, protocols, interactions, markets etc.)
  - → Test platforms required for realization: beeDIP
  - $\rightarrow$  Co-simulation / CIL platfom required for system analyses: <u>OpSim</u>
- Cooperation between R&D partners necessary
  - $\rightarrow$  Co-simulation (real-time, online, offline)
  - $\rightarrow$  Simulation as a service with OpSim

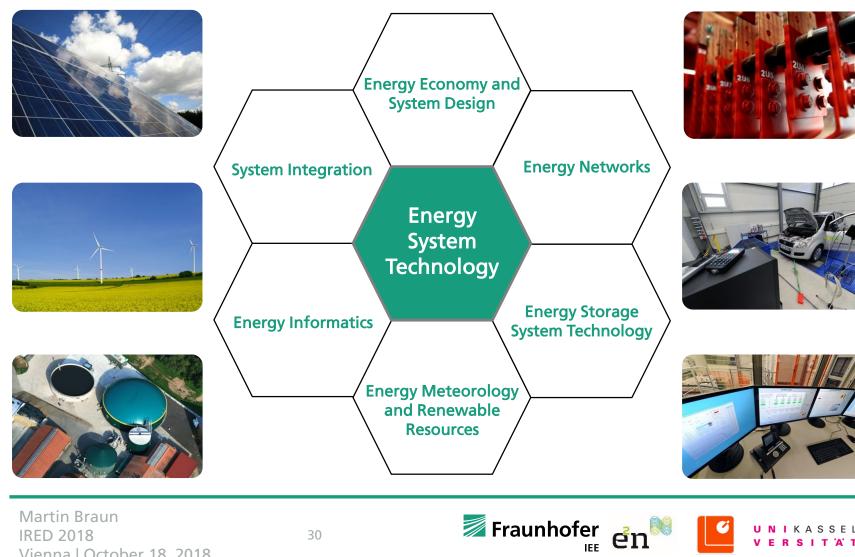





## IEA PVPS Task 14 Report (upcoming)

International R&D Project Collection – Advanced Cooperation between Distribution and Transmission Network Operation

- Collection of 19 international R&D projects from the U.S., Europe and Japan with a focus on advanced TSO/DSO cooperation
- Overview on scope, objectives, key findings and recommendations of the identified R&D projects
- Collection of experiences and discussion on the technology readiness level for the provision of ancillary services by PV
- Latest IEA PVPS reports: http://www.iea-pvps.org/








Energy system technology to realize the 'Energiewende'

U N I K A S S E L



#### Contact

Prof. Dr.-Ing. Martin Braun Head of Grid Planning and Operation <u>martin.braun@iee.fraunhofer.de</u> Phone: +49 561 7294 118 www.iee.fraunhofer.de

#### Fraunhofer IEE– Business Field Grid Planning and Operation

- Techno-economic studies for analyzing, planning, operation, control, stability of power systems
- Automated planning tools
  <u>www.pandapower.org</u>
- Operational tools (algorithms for ancillary services, hardware/software test platform)
- (Co-simulation) test platforms for operational solutions <u>www.opsim.net/en</u>
- Multi-energy system planning and operation (power, heat, gas)
- Microgrid/ hybrid system test bench and PHiL tests







#### U N I K A S S E L V E R S I T 'A' T

#### Contact

#### **Prof. Dr. Martin Braun** Chair of Energy Management and **Power System Operation**

- Mail: martin.braun@uni-kassel.de
- Phone: +49 561 804 6202
- <u>http://www.uni-kassel.de/eecs/e2n</u>

Department e<sup>2</sup>n

Energy Management and Power System Operation

- Development of models, methods, algorithms and tools for analysis, operation and control, and design of the future decentralized power system with high share of renewable energies. e.g.
   www.pandapower.org
- Multi-Objective/Perspective/Level Optimisation of the power system
- Simulation of the power system over time scales and system levels.
- Resilient Control Design incl. power system stability, network restoration, microgrid structures

